
11 ^ ■ ■ ' 

r 
GROL'P DECISION ANALYSIS 

N. C. Dalkey 

California University 

■■ 

AD-A016 273 

Prepared for: 

Office of Naval Research 
Advanced Research Projects Agency 

August 1975 

DISTRIBUTED BY: 

National Technical Information Service 
U. S. DEPARTMENT  OF COMMERCF 

M_ ■ 





SECURITY CLASSIFICATION O'  THIS PACE '»M.n Data Fr;.f. rfj 

REPORT DOCUMENTATION PAGE 
•      REPORT  NUMBt l< 

READ INSTRUCTIONS 
BKFORE COMPLETING FORM 

2. OOVT ACCESSION NO. 3. RECI»! EN T'S C A r ALOS NUMHEH 

*     TITLE ri"W Suhnr/r) 

GROUP DECISION ANALYSIS 

f.     AUTHOR'.i; 

N. C. DAUCEY 

B. CONTRACT OR GRANT NUMBERf») 

^000i4-69-A-0200-4056/452 

9      PERFORMING ORGANIiATION   NAME   AND  AOORF.SS 

University of California,   Los Angeles 
School of Fngineering and Applied Science 

Angeles.  Cnli fnmin  onp^ ■ OÖ 

"      CONTROLLING OFFICE  N'\4E   AND  ADDRESS 

Advanced Research Projects Agency 
1400 WiLion i'.oultrivard 
Arlington,  Virgins 22/09 

I«     MONITORING AGENCY NAME 4   AOORESSrif dltlortnl from Controlllnt Ottlc») 

Office of Naval Research 
800 North Quincy Street 
Arlington,  Virginia  22217 

16      DISTRIBUTION  STATEMENT (ol Ihlt Repor' 

S.    TYPE OF  REPORT ft  PERIOD COVERED 

Interim Technical Report 

6. PERFORMING ORG. REPORT NUMBER 

UCIA-ENG 7571 

10      PROGRAM  ELEMENT, PROJECT,  TASK 
AREA *  WORK UNIT NUMBERS 

ARPA Order No.   2S41 

'2.    REPORT DATE 

August   1975 
H.    NUMBER OF   PAGES 

43 
15.    SECURITY CLASS, (ol thlt report) 

Unclassified 

15«.    DECL ASSIFICATION. DOWNGRADING 
SCHEDULE 

This report is approved for public release.  Distribution is unlimited. 

17.    DISTRIBUTION STATEMENT (ol Ihm abttrmcl tntmrtd In Block 30, II dlllBrtil Irom Rmporl) 

18.    SUPPLEMENTARY NOTES 

'9.    KEY WORDS (Conllnu* on rmvmnm mid» II n»c«««ary and Idmllly by blnck number) 

Decision analysis 
Croup decision 
Group Judgment 
Delphi 

20     ABSTRACT (Conllnum on r«v«ra* tide II n»c»ttmry mnd Idantlly by block number.) 

Delphi,  as a procedure for aggregating judgments under uncertainty,  has 
sullerea  from the lack of an underlying theoretical  framework,  e-'necially 
one that relates (;roup estimates to decision processes.    Attempts" to introduc 
group judment into existing theories of decision have run into difficulties 
exemplified by the Arrow impossibility theorem for group preferences    and 
an analogous theorem by the author demonstrating the non-existence of a 

(over) 

DD   I  JAN   /3    1473 EDITIOK OF   I NOV 6? IS OBSOLETE 
S/N im;: LF On 6601 

SECURITY   CLASSIFICATION OF THIS PAG» ,'IW>»n D.l. «nr<r<rf; 

I 



SLTUWITY  Cl.*SSIg|CAT|ON  OF   THIS  P A O F.' **Ti »n DM« tn(.  ,d) 

»lock 20 (continued) 

general method of aggregating probability estimates. 

It is show,; that consistent group preference functions can be formulated 
by th« use of anchored scales,  i.e.,  Individ.«! preference scales with 
fixed  reference object«.     No general resolution of the aggregation urohlen 
tor probabilltiw appears  fteaMble. but a justification tor fhe use of 
group probability judgments can be made,  based on a  family of theorems 
to the effect that the accuracy of a group judgment is always greater 
than (or at worst equal to) the average accuracy of the individual judff- 
«ents.    Some empirical data, and some analytical results,   indicate that 
these aggregation rules are more generally applicable,  and more powerful 
than has been assumed  in the past. 

L 
i<i/ 

ICruniTV CLAISiriCATION OF THIS PMt(Wh** D»i» Snr*r*tf; 



UCLA-ENG-7571 
AUGUST 1975 

GROUP DECISION ANALYSIS 

Norman C. Dalkey 

School of Engineering and Applied Science 
University of California 
Los Angeles, California 

i     .  • 
i 'la' 1 ^ ^ 

public rolcoi«! 
Unlünittd 

a 

. —  



ABSTRACT 

Delphi,  a.  a procedure  for aggregating judgments under uncertainty, 

haa suffered fro« the  lack of an underlying theoretical fr«neworlc.  especially 

on« that relate« group e.ti-tee to decision processes.    Attempts to Introduce 

group Judgment into exl.tlng theories of decision have run Into difficult!«, 

exemplified by the Arrow impossibility theorem for group preferences,  and an 

•nalogous theorem by the author demonstrating the non-existence of a general 

method of aggregating probability estimates. 

It 1. shown that consistent group preference functions can be formulated 

by the use of anchored scales,  i.e.,  individual preference scales with fixed 

reference objects.    No general resolution of the aggregation problem for prob- 

•bllities appears feasible, but a Justification for the use of group prob- 

ability Judgments can be made,  based on a family of  theorems  to the effect 

that th-. accuracy of a group Judgment  is always greater than  (or at worst 

equal to)  the average accuracy of the indi.idual Judgments.     Some empirical 

data, and some analytical reaulta.  Indicate that  these aggregation rules are 

more generally applicable,  and more powerful than nas been assumed in the 
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GROUP DECISION THEORY 

In the past quarter century there has been rapid progress In the theory 

of individual decision making under uncertainty. One of the more widely 

accepted points of view is that of decision analysis, or as it is sometimes 

called BayesIan analysis.  This point of view Involves the notions of subject- 

ive probability, utility, and the decision rule, maximize expected utility. 

(1)  The theory in its present form stems from the tneory of garnet; in fact, 

it can be considered the one-player version of game theory.  However, it is 

like the theory of games, an extension of a much older tradition concerned with 

rational aconomlc decisionmaking. 

In contrast, group decisionmaking has proved surprisingly intractable. 

Attempts to formulate a theory of group decisions have run into a spate of 

problems that could loos'^y be characterized as paradoxes of aggregation.  It 

might be thought that a reasonable tactic would be to adopt the decision 

analysis framework and substitute the phrases groip probability judgment, and 

ÄEEHE utility for the corresponding individual terms - in fact, this tactic has 

been suggested by a number of workers in the field.  (2) Unfortunately, as the 

scatological saying has it. when this is tried, things hit the fan; troubles 

break out all over. Perhaps the best known of these troubles is the theorem 

of Kenneth Arrow which asserts that there does not exist a general method of 

aggregating individual preferences into a consistent group preference relation. 

(3) This appears to cut the foundation away from the notion of group utility. 

Some yewrs ago I proved an analogous theorem showing the impossibility of 

a general group probability function.  (4) And, as if that were not enough, 

even if there were no special problem with group utilities and group prob- 

abilities, difficulties can arise with the decision rule. 

MfeMMMan». - 



Figure 1 illustrates a typical difficulty of this sort.  There are two 

individuals, i and J, who are trying to select between two courses of action, 

A and B.  The outcome of the actions can be influenced by the events E or 

non-E.  Eich individual his his own estimate of the probabilities of the 

events displayed above the matrix, and each has his own assessment of the 

utilities of the outcome.  The utilities for 1 are in the upper left of the 

boxes, the utilities f.,r J in the lower right.  The sma.'l insert boxes show 

the average.  The value difference, can be interpreted either as differences 

of interest - i.e., each would receive different payoffs for each outcome - or 

as different Judgments of the value of the outcomes to the pair join; ly. 

Under either interpretation, both individuals think action A IF, pi arable 

to action B.  This is indicated by the third column, where the expected util- 

ifies for each action and each indivHual art listed.  However, if we take the 

average of the two probability estimates as the group probability, and the 

average of the two utilities as the group utility, then the group decision 

would be that action B is preferable to action A.* This viola.es the silver 

rule of economic decision theory, namely the Pareto unanimity principle.** (5) 

The.e three kinds of difficulties -with preferences, with probabilities, 

and with the decision rule - by no means exhaust the list of troubles that 

arise when group notions are introduced into decision theory.  Individaals can 

disagree, and almost inevitably do disagree in practice, about any aspect of 

the decision situation.  Figure 2 illustrates the simplest model of a decision 

Irreal for ^     t aggregation of probabilities and utilities is not 
thP ! H!     ^ example.  Other functions such as the geometric mean or 
the median could be used and similar "paradoxes" could be generated. 

The golden rule, of course, is maximize expected utility. 
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problem; a set of potential actions k±t  a set of uncertain states of the 

world Ei   ("E" for event) and a matrix of outcomes 10^ | where 0  is the 

result of implementing action A1 when Ej is the state of the world.  Indi- 

viduals involved in a decision can disagree on the appropriateness of the 

list of actions, on the relevance of the states of the world, and on the 

outcomes - i.e., whether those precise consequences would indeed occur if the 

action were taken.  The «ore general disagreements about the nature of the 

problem I have called the "point of view" issue; each individual has his own 

model. (6). 

Most formal analyses of decisions start with the problem already formu- 

lated as a matrix as in Figure 2,* and the theory then deals with how to go 

on from there.  Going on from there, for decision analysis means assigning 

probabilities to the events, assigning values or utilities to the outcomes, 

computing the expected outcomes of each action, and selecting the action with 

the highest expected value. 

I will follow this procedure and assume that a statement of the decision 

problem in terms of a matrix is given. Each individual has his own prob- 

ability distribution over the events, and his own preference relation on the 

outcomes.  The question then becomes, from the point of view of the group, 

what is the best way to assign probabilities to the events, what is the best 

way to assign utilities to the outcomes, and what is an appropriate decision 

rule: Of course, the word best is just for show.  We're not that far along yet, 

The difficulties that arise when the decision concerns a group and the 

group disagrees on the relevant numbers are all of one general sort: 

In some versions, a more general framework, the decision tree is 

to8'!" ^ T?***  rlnt- Thl8 m0re «en"al f"-work * n^ge^ 
un J** Pre8*ntl

inVe8tlgatl0n' 8ince a11 of the difficulties alvelTllw up in the simpler case of the decision matrix. aireaay show 
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There is a set of individual judgments {j^, where 1 indexes the Individual 

memb3rs of the group.  We would like to define a function F(J). J - (j  j ) 

which aggregates the individual judgments into a group judgmen'..  We should 

like to fulfill several kinds of conditions: 

1. Substantive conditions; F should be the same sort of thing 

as the individual judgments J^ Thus, if the ^ are probabilities, 

F(J) should be a probability. If the ^ are preferences, then F(J) 

should be a preference relation, etc. 

2. Consistency conditions;  By consistency is meant coherence 

between the individual judgments and the group judgment.  Con- 

sistency for individual judgments separately, and for the group 

judgment separately are presumably part of the substantive condi- 

tions. A typical consistency condition is the Pareto unanimity 

principle mentioned earlier; that is, if all the ^ are identical, 

then F(J) - J 

3.  Performance conditions:  If there is a figure of merit for 

the individual judgments, then the group judgment should do reason- 

ably well, compared with the individual judgments, on that figure 

of merit. As an obvious example, if all the individual judgments 

are declarative sentences, and if they are all true, then F(J) should 

not be false. 

to design a camel when you want a horse  On th«! f the individuals, 

expected of a group than juct that it not louse up the decision. 

- 
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In the literature on group decision there has been little mention of 

conditions of type 3.  There are at least two reasons:  First, there is no 

generally accepted performance measures for preferences or values - no way to 

say that one individual's value judgment is correct and another's incorrect. 

In this respect, value judgments are ad lib.  Secondly, the well-known dif- 

ficulties arise from trying to meet conditions rf the first two types; you 

can't get as far as type 3. 

One thesis of this paper is that the situation can be reversed; for those 

cases where performance criteria exist, performance can be used to justify 

overlooking some inconsistencies between individual judgments. This could 

be called the Emerson principle.* If the aggregation procedure produces a 

judgment of higher excellence than the individual judgments, this fact can 

override some inconsistencies between the two. 

A certain amount of luck enters at this stage.  Since there are no 

performance criteria for preferences, the game would be lost if the Emerson 

principle were needed to get around the paradoxes of aggregation for prefer- 

ences.  As it happens, there is a natural resolution of the Arrow paradox 

without recourse to performance criteria. 

Arrow's proof of the impossibility theorem is too extensive to repro- 

duce here, but a glance at the assumptions leading to the theorem is in order. 

Emerson rather blew it. The quotation (from Bartlett) is "a foolish 
consistency is the hobgoblin of little minds...." A somewhat less 

(wh^h   /r11^1011 mi8ht be:  Fear of in^nsistencTif a hobgoblin 
^M" I 'i"16 ur bi8 mlnd8)-  A dramatic c***  ^ point is the dis- 
on the Li thef

nUmber Zero-  There ^s a fierce debate for two centuries 
on the status of zero. Accepting it as a number opened the way " 

e^de'nt  i0nth hut }h\ad^****  of having zero within the pallwere 
evident  In the end, the pragmatic side won out, with the problem of 
contradictions "solved" by the remarkably ad hoc'rule, "don^t d^df 

■■■nauMaMi^uMaa aMBM^M_BM ■ - _j 
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What I will contend is that there is nothing unacceptable about the intent of 

the assumptions; rather, it is an overstrict interpretation of the notion of 

ordinal which creates the problem. 

The elements of the model are:  (1) a set X - {x.y.z,...} of objects to 

be ordered.   (2) a set I - -,.1,2,... ,n} of n individuals.  (3) a set 

K - {R, R', R...} of vectors of individual ordering relations over X.  Each 

R " (Ri R
n) consists of n individual orders. Thus xR.y means individual 

i prefers x to y or is indifferent between them. A super-fixed arrow 

indicates strict preference, i.e., xR^ means xR^ and not yR x.  (4) a func- 

tion F(R) which generates a group preference function over X, depending on 

the vector of individual preferences R. 

A. Substantive conditions 

1. For each R in K and each R in R, 

a. R. is a complete order over X 

b. F(R) is a comrl^te order over X 

2. i>.mong the R in K there are all possible orderings 

by n individuals of three objects. 

B. Consistency conditions 

1. Monotonicity.  Define R to be a forward shift of x with 

respect to R if: R is identical to R except for x; 

whenever xRjy, then xR^y; and whenever xRy, then xlTy. 

If R is a forward shift of x with respect to R, then if 

xF(R)y then xF(R5y. 

* 
For the problem of social values, or for generating a social welfare 
function, X would be interpreted as states of society. However, for 
addressing the problem of aggregation, the precise nature of X is 
not germane, hence is is referred to here as "objects". 

  



P"' ^ 

2. Independence of irrelevant alternatives. If R is identical 

to R on some subset B of X, then F(R) is identical to 

F(R) on B. 

3. Non-imposition.  For any pair of objects x, y, there is an 

R In K such that xF(R)y. 

4. Non-dictatorial.  For any individual i, there is a pair of 

objects x, y and an R such that xR y and yF(R)x. 

A relation R is a complete order over a set of objects X if two condi- 

tions hold: 

1. Connexity.  For every pair of objects x, y, in X, either 

xRy or yRx. 

2. Transitivity.  If xRy and yRz, then xRz. 

The second substantive condition requires that for at least three 

objects, any possible combination of individual preferences can occur, and 

the group preference relation is defined for all those possiöilities.  It 

is a condition to assure a certain amount of generality for the group 

preference function. 

The first consistency condition is a sort of sure-thing principle. 

If x is preferred to y on the basis of a set of individual relations R, 

and another set R treats x at least as favorably, then surely x is pre- 

ferred to y on the basis of R. 

The second consistency condition is a crucial one.  It imposes 

a certain stability on the group preference.  Thus if x is preferred to 

y by the group, and if attention is restricted to a smaller set of objects, 

still containing x and y, the group preference should not reverse.  This is 

the condition that is violated by most well-known aggregation methods. 

- ■ -- ■ 
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The third consistency condition Is Intended to assure that the group 

preference relation Is not determined by some rule Independent of the Indi- 

vidual preferences. 

The last consistency condition requires that the group preference func- 

tion not be determined by the preferences of a single Individual (dictator.) 

It asks only that for any Individual, some pair of objects and some set of 

individual preferences exist such that the group and the individual disagree. 

As I remarked earlier, the general intent of the consistency condition 

appears to be desirable.  However, the conditions have the apparently devasta- 

ting effect that there is no group preference function which fulfills them. 

To see how to get out of the paradox, we need a small aside on measure- 

ment.  In many diacussions of measurement in economics, a broad distinction 

is made between ordinal and cardinal scales.  The former are purely relational; 

if numbers are coordinated to the scale, they have only rank-order properties. 

In technical terms, the numbers are fixed only up to a monotonic transforma- 

tion. Cardinal scales, on the other hand, have numerical properties.  Several 

varieties of these may be distinquished (Interval, ratio, etc.) depending on 

the degree to which the numbers are fixed by the measuring process.  What is 

overlooked by this classification is the role of reference objects or stand- 

ards.  For physical interval scales such as temperature, the scale is not 

fixed until two different physical states have been specified - e.g., the 

freezing and boiling points of water at sea level - and two numbers - e.g., 

0 and 100 - have been assigned to these two states.  Until this coordination 

of numbers and physical states '.as been performed, the scale cannot be used 

to measure the temperature of a given object.  For example, if an individual 

states that his temperature is 46, this tells you nothing until you know his 

reference states and his coordinated numbers for those states. 

10 
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The numbers coordinated with reference objects are often called "arbi- 

trary constants." This phaseology can be misleading.  In a purely mathe- 

matical sense, the numbers are arbitrary, but that does not mean they are 

dispensable. Which states and which numbers will be employed as references 

can be chosen "freely" (except for practical considerations of feasibility 

and convenience) but some choice must be made before the scnle becomes a 

measuring instrument. 

Almost completely overlooked in the economic literature is the role of 

reference objects for ordinal scales.  A typical physical ordinal scale is 

the Mohs hardness scale.  This scale is associated with the relation scratches; 

if object x scratches object y, then x is harder than y.  This is the basis 

of the well known test of a stone to determine if it is a "gem" by seeing 

if it will scratch ordinary window glass.  Figure 3 shows one widely used 

f^rm of the scale.  Each of the ten itetas will scratch all of those below 

it.  However, the associated numbers are purely ordinal — they are rank 

orders and nothing more. To say that the hardness of a fingernail is be- 

tween 2 and 3 merely means that a fingernail will scratch gypsum and be 

scratched by calcite. 

Such an ordinal scali with a fixed set of reference objects, can be 

called an anchored scale. An anchored scale consists of a set of objects 

X, a specified set of anchors A, and an ordering relation R.  Usually A 

would be a subset of X. The scale value S(x) of an object x is the highest 

of the set A that has the relation R to x. As illustrated in Figure 4, 

A - {a,b,c,d} and S(x) » a.  For some purposes it may be convenient to 

attach numbers to the anchors, but these numbers are determined only up to 

a monotonic transformation. 

11 
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MOHS HARDNESS SCALE 
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ORDINAL SCALE 
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Figur« 4 
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One way to interpret the Arrow theorem is:  If you formulate a group 

prefer-nce function w'iich disregards reference objects, it will not in general 

be compatible with the individual preferences  To be useful, that statement 

needs to be turnad around to say:  If individuals express their preferences 

in terms of anchored scales, then a group anchored scale can be formulated 

which fulfills the analogue of the Arrow conditions for anchored scales.  This 

wiJl now be investigated. 

A group anchored scale can be generated from a set of individual anchored 

acales as follows:  The anchor set for the group is the set of all n-tuples 

of individual anchors, i.e., the group anchor set A is the cartesian product 

of the individual anchor seti, A - A^X XAn.  The idea is illustrated 

for two individuals in Figure 5.  Each pair of individual anchors forms a 

reference point for the group.  The pairs sort the objects in X into boxes, 

where if a and b are consecutive anchors in individual I's scale, and c and d 

are consecutive anchors in individual 2's scale, the box consists of all x's 

such that bl^x bu: not a^x and dR2x but not cR2x.  The scale value of an 

object x is the pair of individual scale values.  luustrated in Figure 5 

is the cafe S(x) - (c,d). 

There is a natural partial ordering of the objects given a group scale, 

namely the partial order defined by unanimity:  If S1(x)R S^y) for every i, 

tnen x is preferred by the group to y.  The only substantive condition not 

fulfilled by this partial order is connexity.  What needs to be shown is 

that this natural partial order can be extended to a complete order without 

violating the analogue of the consistency conditions for anchored scales. 

The group preference structure, expressed in terms of anchored scales 

has the elements:  a set of objects X; a set of individual preference scales 

14 
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GROUP ORDINAL SCALE 
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K ■ {S.S',S,..,), vhere each S ■ (S,,...,S ) is associated with anchor sets 

(A1,...,An) and preference relations (t|(*«*tK >{ a group preference function 

F(S) associated with a group anchor set A - AjXAJC.XA ; and a group prefer- 

ence relation G. Each Imlvldual preference scale S. Is based on the associ- 

ated preference relation R..  In the group case, the order of derivation Is 

reversed. A group preference scale Is generated over the anchor set A, 

which then Imposes a group preference relation on the entire set X. The nota- 

tion designating scales and relations becomes somewhat Involved. The conven- 

tion will be followed that preference relations associated with scales will 

be represented by the quasi-arithmetic symbols > and >. Differences between 

individual and group scales will generally be clear from the arguments. Thus 

Sj^x) > S (y) states that individual 1 prefers the scale value of x to the 

scale value of y (and thus, prefers x to y). P(S)(x) > F(S)(y) states that 

the group prefers the group scale value of x to the group scale value of y. 

Where no ambiguity exists, this statement will be abbreviated to S(x) > S(y). 

The basic modification of the Arrow conditions to make them appropriate 

for anchored scales are:  (a) The anchor sets for all individuals are fixed, 

i.e., for any Si, 8^ in K, A±  - A . (b) The objects comprising t\;e anchor 

sets arc exempted from the consistency conditions, (c) For all other obJec:s, 

the conditions are expressed in terms of the scale values of the objects. 

Thus, the modified Arrow conditions are: 

This does not imply that the anchor sets for different individuals are 
the same. In general, anchor sets for different individuals may be 
entirely distinct; although in practice there are obvious advantages 
to having conmon anchor sets,  (a) does imply, of course, that the 
group anchor set is fixed. 

16 
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A. Substantive conditions. 

i.  Each S^ in K and F(S) is an anchored scale. 

2.  There are three objects such that all possible 

orderings of their scale values by n individuals 

occur in members of K, 

B. Consistency conditions. 

1. Mcnotonicity.  Define a forward shift of x by S 

with respect to S as:  S is identical to S except 

for x.  Whenever S^x) > S^y) then S (x) > S (y) 

and whenever S (x) > S (y) then S (x) > S (y). 

If S is a forward shift of x with respect to S 

then, whenever S(x) > S(y), S(x) > S(y). 

2. Independence of irrelevant alternatives. If S is 

identical to JS on the subset B of X, then F(S) is 

identical to f(S) on B. 

3. Non-imposed. For any x and y in X, there is an S 

such that S(x) > S(y). 

A.  Non-dictatorial.  For tvery i, there is an x, y and S such 

that S^x) > Si(y) and S(y) > S(x). 

Rather than look for conditions which guarantee the existence of a group 

preference scale, it is simpler to exhibit a specific group scale which satis- 

fies the modified conditions, and thus acts as an existence proof.  One appro- 

priate scale is anchored sum of ranks.  Let each individual coordinate rank- 

order numbers with each of his reference objects.  Designate these rank-order 
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numbers by S (x).   It is convenient to let the rank order numbers start with 

1 for the least preferred object. The group scale number is defined by S (x) 

* 
- L  S (x). The group preference relation is defined by S(x; > S(y) means 

S*(x) > S*(y). 

Since this procedure assigns a number to every object in X, and the arith- 

metic inequality is a complete order, a complete group preference order is 

defined on X. Monotonicity is assured since the sun is monotonic in its 

summands.  Consistency condition 2 is fulfilled directly; the grcup scale value 

does not change when only a subset of objects is considered.  Condition 3 is 

satisfied by invoking substantive condition 2 — there is a pair of objects 

x, y such that S (x) > S (y) for every i — and the sum fulfills the unaminity 

principle.  Substantive condition 2 also requires that each individual have at 

least two reference objects (three potential rank order numbers) and hence 

non-dictatorship is fulfilled. There is a pair of objects x and y such that 

S1(x) - Si(y) + 1, but S (y) =• S (x) + 2 for j »« I.  Hence IS  (y) = T.S  (x) 

+ 2(n-l) - 1.  Thus x is preferred to y by individual i, and y is preferred 

to x by the group. 

This completes the demonstration that anchored sum of ranks fulfills the 

analogues of the Arrow conditions for group preference scales, and is thus 

an existence proof for group preference functions. 

This will not work if the anchor set is infinite at both ends, or if dif- 
ferent individuals have anchor sets infinite in different directions. 
There is no problem dealing with infinite anchor sets, but they are over- 
looked here because the essential difficulties expressed by the Arrow 
theorem arise with finite sets. 

** 
There may be some uneasiness that anchored sum of ranks is not purely ordi- 
nal in the sense that the group function depends on the numerical values of 
the rank order numbers.  Thus, if one individual multiplied all his rank 
order numbers by some large constant, he would become an arithmetic dictator. 
This objection misconstiues the role of the rank order numbers for the 
existence proof. They are simply a device to define a group scale which is 
consistent. Notice that once this group scale has been defined, the rank- 
order numbers can be "thrown away" and the group scale applied in a purely 
non-numerical fashion. 

18 
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Anchored sum of ranks is just one out of an infinite number of consi' tent 

group scales that can be defined. In a way this is disappointing. The selec- 

tion of a specific group function in practice would depend on other properties 

than those contained in the Arrow conditions. 

Aside on Electing a President 

As is well known, the type of difficulty expressed in the Arrow theorem 

has serious implications for all group decisions Involving voting-like procedures. 

The most serious are the dominating role of the agenda when sequential (progres- 

sive elimination) techniques are used (7) and the "spoiling" effects of 

"Irrelevant" candidates.  In the French style of election where there is a 

runoff between the two leading contenders if there is no majority candidate, 

there are many plausible "scenarios" which suggest that the candidate most 

highly rated by the total electorate can be eliminated on the first round.  It 

is even easy to design situations in which the least preferred candidate out of 

three is elected (c.f., the U.S. example below.) 

In the United States, the situation is obscured by the electoral college, 

and the f^ct that there are usually only two major candidates.  However, the 

Issues still lurk In the background.  Cunslder, for example, the election of 

1912, with Wilson, Taft, and Roosevelt as the three major candidates. We don't 

have a record of voter preferences among these, just the record of first prefer- 

ences. A plausible assumption would be that most of those who voted for Taft 

or Roosevelt would have preferred either to Wilson, and those who voted for 

Wilson would have preferred Roosevelt to Taft.  There assumptions generate 

the preference table which follows. 
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Wilson Roosevelt Taft Number^10^ 

Wilson 1 2 3 6.3 

Roosevelt 3 1 2 3.5 

Taft 3 2 1 4.2 

Straight majority vote on this table would lead to the preference order 

Roosevelt-Taft-Wilson.  Sum of ranks (weighted by numbers of voters) gives the 

order Roosevelt-Wilson-Taft.  In either case. Roosevelt is the "preferred" 

candidute, and in the case of majority vote, Wilson is the least preferred. 

This type of mis-selection could be eliminated if anchored scales were 

used.  In the case of the U.S. presidential elections there is a natural set 

of anchors, namely, the list of all past presidents.  A plausible voting 

scheme would be to have each voter rank-order all the past presidents in 

terms of his perception of their desirability as pr^idents.  This could be 

done at the voter's leisure at any time between elections. There is no 

necessity that the rank orders of any individual agree with those of any 

other.  At election time, each voter casts his ballot by reporting the posi- 

tion in his scale of each candidate. The candidate receiving the highest 

sum of ranks is elected. 

The scheme will work for as many candidates as the voters have time to 

rate.  Tt has the side benefit that the final tally would give a fairly 

diagnostic reading on the voters evaluation of the candidates. 

There is a possible weakness in the procedure as described. A signifi- 

cant segment of the voting public might attempt to bias the ratings by, for 

example, giving the highest possible rating to their favorite candidate, and 

Since there are 38 presidents, there are 38! = 5 23 x in44 nom *  „, 
which is quite enough for each voter to hav; a different ord.^T  ^ 
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rating all the others at the lowest level. This would vitiate the procedure. 

There is a simple way around this difficulty, one that is perhaps a little 

cumbersome, but not without attractions of its own. The resolution is affected 

by starting with a large slate of initial candidates - say 50 for purposes of 

illustration - all of which are rated by the voters. After all ratings are in, 

a small final slate — say 5 - are selected at random. The candidate in this 

final slate with the highest sum of ranks would then be declared president. 

The numbers 50 and 5 are just illustrative.  Some statistical engineering 

could be done to determine the minimal sizes for the two slates keeping to an 

acceptable level the probability that the finalists were not all from the 

bottom of the heap.  I would imagine that a lottery of the type suggested 

would be a dramatic event.  It should have a very high rating if telecast live. 

The question whether the procedure would be feasible for the "average 

citizen" doesn't appear very serious.  It would require somewhat more back- 

ground and a little more time than now appears to be devoted to voting by the 

electorate. 

The rank order scale is itself relatively crude, and could probably be 

improved upon. However, this is a second order consideration (especially 

with 70 or so million voters) compared to the stability and consistency 

afforded by the anchored rating procedure. 

Note on Numerical Utilities 

Once having found that consistent group preference functions can be 

generated, there is no obvious reason why the advantages of cardinal utility 

functions should be exploited. The subject is treated much more fully else- 

where (8).  I will content myself with two points. 
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If it is assumed that each Individual member of the group has a numerical 

utility function on the set of objects X (e.g., of the sort elaborated by 

von Neumann and Morgenstern, where the scale is determined up to a linear 

transformation (9)) then individual reference sets need contain only two objects. 

This is a great simplification over ordinal scales where a large set of refer- 

ence objects might be needed to determine the individual scales with suffici- 

ent precision. More significant is the fact that reference sets for general 

social value scales are difficult even to imagine - most individuals have not 

had enough experience with enough states of society to designate a well-defined 

set of "objects." The assumption that each individual rates social states 

solely in terms of his own consumption appears to be a radical oversimplifica- 

tion. Although the assumption that each individual has an interval utility 

scale on states of society also appears to be highly unrealistic, some of the 

implied conditions for social utility scales might be more palatable than the 

assumption that society could examine the individual anchor sets of large 

numbers of individuals and select a social ordering of the cartesian product. 

Under the assumption of individual cardinal utility scales if any of 

several elementary additional assumptions are made, the form of the group 

utility function becomes sharply restricted.  For example, if the assumption 

is made that when the group finds two objects x and y equivalent, then it is 

indifferent between either and any probability mixture of the two, then the 

group utility function takes the form of a weighted sum of the individual 

utilities; i.e., if l^ is the utility function for individual i, and U is the 

group utility function, then U - Ew^. The w1 in this case perform a dual 

role of rescaling each individual utility to conform to the others, and also 

of determining the proportionate share of each individual in social benefits. 

. 
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Although a number of objections have been raised against the linear social 

utility function. It has some strong advantages.  This Is especially true If 

It Is assumed that the opportunity space (space of achievable outcomes) Is 

concave, In which case some of the more salient criticisms become "academic" - 

i.e., are concerned with cases which are not likely to arise. 

If it is assumed that an absolute zero can be defined for individual 

utilities - possibly complete destitution guaranteeing death - then a multi- 
i 

plicatlve form for the group utility looks attractive.  In symbols, U - IT U wl 
1 i 

Here the weighting factors appear as exponents.  As John Nash pointed out 

long ago, the product has the desirable feature that it is invariant under 
I 

multiplicative transformations (10), and hence, given the assumption of an 

absolute zero, invariant under all permissable transformations. Unfortunately, 

the product is not compatible with the assumption of unamimity on probability 

mixtures. 

Performance Criteria for Probabilities 

The situation with group probability estimates is quite different from 

that with group preference judgments.  It looks very unlikely that any 

"natural" resolution of the inconsistencies between Individual and group 

* 
estimates can be found.  The reason is that the constraints on probabilities 

are much more severe than those on preferences.  In particular, probabilities 

are fixed numbers allowing no tranformations; i.e., if p is a probability 

measure on a set of events, there is no function f(p) ^ p which is also a 

probability measure on the same set of events.  For group estimates, the only 

I 

1  say unlikely, rather than impossible because there is the outside chance 
that some measure of uncertainty other than probability will turn out to 
be both a reasonable way to express incomplete information, and will 
aggregate in a consistent fashion. 
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identity function is the dictatorial one, f(p1, p2,...,pn) - p^ where i is a 

given individual. 

Thfire are no dramatic paradoxes which ari-e from this situation.  Simple 

illustrations of the type of difficulty: The average of a set of probabilities 

fulfills the requirement that probabilities of exclusive events add; however, 

it does not fulfill the requirement that the probability of the conjunction of 

two independent events is the product.  The converse is true for the product 

as an aggregation rule - if does not sum to one for exclusive and exhaustive 

events but is multiplicative for conjunctions. 

If there ^.s any hope of "rescuing" group probability estimates from 

inconsistency, we apparently need to invoke the Emerson principle. This 

requires specifying a figure of merit for probability eFtimates.  In the past 

decade or so there has been a rapid development of a theory of probability 

assessment which furnishes an appropriate criterion. 

There are several directions from which this theory can be approached. 

One of the most perspicuous, if not perhaps the most profound, begins with 

the desideratum of keeping the estimator "honest." The theory consists of a 

ieward scheme which will motivate the estimator to report what he believes 

to be the relevant probabilities.  Several basic notions are needed to 

expound the idea. 

{E }  A set of (exhaustive and exclusive) events for 

which probabilities are desired. 

{Q.}  The probabilities on E which the estimator 

believes. 

{R.}  The probabilities which the estimator reports. 

24 
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^PJ^    The ^unknown) objective probabilities* 

S(R,J)  A reward function which, after the fact, pays the 

estimator an amount S, depending on the report R, 

and the event j which occurs. 

To say that S rewards the estimator for being honest is to say 

J QjSCR.J) < Z QjSCQ.J) 

That is, the estimators' (subjective) expected reward is greatest when he 

(honestly) reports what he believes. There is a large class of functions 

which fulfill this condition.  These have been extensively studied (12, 13, 

14). Among the better known are the logarithmic scoring rule, S(R,j) - log R 

and the quadratic scoring rule, S(R,j) = 2R - IR2.  it is easy to see that 
J  j J 

the sum of any two scoring rules is a scoring rule, and any linear transforma- 

tion, aS + b, where a and b are constants, is a scoring scheme. Various 

names have been given to these reward structures - reproducing score, 

admissible score, probabilistic score, proper score, honesty score, etc.  I 

will use the short3fct — proper score. 

There are a number of properties of proper scores which can be derived 

fairly directly from the definition. S rewards the estimator not only for 

being honest, but also for being accurate; i.e., 

E PJS(R,j) < Z P S(P,j) 

This follows immediately from the definition by substituting P for Q.  Thus, 

the objective expected score is a maximum when the estimator reports the 

objective probability. 

n 

There is some dispute whether objective probabilities can be defined for 

III  nM6; J e8tJma,te81
of interest in decision theory.  Rather than arguing 

the point here, I simply examine the consequences of assuming that there is 
an objective probability.  For a fuller discussion see (11). 
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A proper score rewards the estimator for being precise, I.e., for 

reporting probabilities close to 0 or 1. This results from the fact that 

£ QjS(Q,J) Is convex. (15) 

A proper score can be thought of as an extension of the notion of truth- 

value to the case of probabilistic estimates.  For declarative assertions - 

"It will rain tomorrow" - the score Is two-valued, true (or 1) If the event 

occurs, false (or 0) If the event does not occur.  For probabilistic state- 

ments - "The probability of rain tomorrow Is p" - the score Is S(p, rain) If 

It rains and S(p, not-raln) If It doesn't rain.  The two-valued scheme has 

an analogue among proper scores, namely, the score rule that pays 1 If the 

event with maximum reported probability occurs, and 0 otherwise.  In a sense, 

this Is the score rule used In grading objective examinations. If we assume 

that the student checks the alternative that he thinks has the highest 

probability of being true. 

It Is convenient to divide proper scores Into two aorvs:    Informational 

and economic.  Informational scores are those which depend only on the 

reported probabilities and the event that occurs and on no other properties of 

the situation.  Ecoromlc scores depend not only on the reported probabilities 

but also on the decision situation, e.g., on the payoff resulting from a 

decision. 

Among the Informational scares, there Is a special group which have been 

considered the most appropriate for scientific studies, and might be labeled 

scientific scores.  These have a property that can be called exactness, i.e., 

the scores motivate the estimator to furnish exact report of his b*liefs. 

The two-valued score mentioned above motivates the estimator only to report a 

higher probability for the event he thinks most likely than for the others. 
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An exact score clearly must have a continuum of values.  The logarithmic and 

quadratic scores mentioned above are exact.  Mose of the scientific scores 

have an important additional property; namely, S(R,j) is concave in R. 

Informational N-heads Rules 

One way to express the Emerson principle for probability estimates is 

to say that the group will perform better, in terms of prababillstic scores, 

than the individual members of the group. Given a set of estimates {Q ,} by 

a group (k indexes individuals), the average objective expected score is 

OES ' 1/nZl  P S(Q  ) . I  P 1/n I  S(QU .) 
k j J  k'J   j J   k   k,j 

I have assumed each individual is honest and reports his believed probabili- 

ties Qk,  In the more interesting cases, P is unknown, and the average objec- 

tive expectation cannot be computed. However, we can ask, under what cir- 

cumstances is the average expected score of the individuals less than the 

expected score of the group; i.e., when is OES less than I P (Q,j) where 
J J 

Q
 ' 1/n ^ V independently of P and {Qk}?  It is not difficult to show that 

a necessary and sufficient condition for the inequality to hold for all P 

and {Qk} is that S(Q,j) be concave in Q. 

Hence, for those scientific probabilistic scores which are concave, 

such as the log score and the quadratic score, the result holds that the 

objective expected score of the group will always be greater than or at 

worst equal to the average expected score of the individuals.  Over a large 

number of estimates, the observed total score of the group should be larger 

than the average total score of the individual members. 

I call a statement to the effect that a group judgment receives a 

higher performance rating than the average rating of the Individual judgments 

27 
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an n-heads rule (generalization of the adage "two-heads are better than one.-) 

The elementary n-heads rule enunciated above is just one of a large family of 

such rules, where the precise form of the rule depends on the kind of estimate, 

on the scoring rule, on the aggregation rule for individual estimates, and on 

the kind of expectation employed (absolute,* objective, or subjective.) 

Somewhat more definitive n-heads rules can be derived if the method of 

aggregation is tailored to the form of score rule.  For example, the geometric 

mean "fits" the logarithmic score rule better than the mean.  Thus, it is 

shown in (16) that the objective expected log score of the geometric mean is 

precisely equal to the average expected score of the individuals plus a 

term D which is a function of the dispersion of the individusl estimates 

but is independent of the objective probabilitie3.  The higher the dispersioi., 

the greater D - i.e., the greater the advantage of the group score over the 

average individual score. 

The various n-heads rules would appear to furnish a justification for the 

utilization of group probability estimates, even if there is some Inconsistency 

between the group estimate and the individual esf.mates. 

Economic N-heads Rules 

The results of the previous section concern a small subclass of proper 

scoring rules, namely those that are concave.  For many decisions, the most 

appropriate performance criterion is the payoff as defined in the decision 

matrix.  This measure does not in general lead to concave functions. 

Define an enterprise as a group of individuals who are faced with a 

decision matrix as in Figure 2.  Various sorts of enterprises can be 

Absolute means non-probabilistic, a type of rule not examined in this paper. 
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distinguished, depending on how the group wishes to proceed, and the degree 

of commonality assumed for utility functions.  The simplest type of enterprise 

i-j one where the individual utility functions coincide, and the group has pre- 

determined that they will select one common action.  This type of enterprise 

could arise from the group having established a group utility function with the 

rule that all members will attempt to maximize this function.  An analogous 

case arises in the more familiar situation of an economic partnership, where 

I 
the group utility is Just  the proceeds of the firm,  and each member receives a 

proportionate share of  the proceeds. 

We  first establish a general result,  namely,   that any decision matrix, 
% 

with a given utility function, and the decision rule maximize expected utility, 

is a proper scoring rule for estimates of the probabilities.  Let {Q } be an 

estimate of the probabilities for a decision matrix |u  |. The expected 

utility of action A^^ as a function of Q, U (Q), is I  Q.U, .  We define 

U (Q,j) as U  of the action k^  for which U^Q) is a maximum.  Thus 

E Q.iu (Q»J) is the maximum achievable expected utility, given Q.  It follows 
j J 

from the definition that 

I  QjMQ.J) > I  Q,U*(R,J) 

This inequality has precisely the defining form for a proper score rule, where 

* 
U (Q,J) plays the role of S(Q,J). 

ThiB score rule has sometimes been called the "piece of the action" rule — 

to be applied to a consultant, for example, who is advising a firm by furnish- 

ing estimates of probabilities for relevant contingencies. (17) We are apply- 

ing it more generally to 'ne case of all concerned individuals, whether con- 

sultants or members of the firm, where the payoff is some proportion of the 

proceeds of the firm.  Raiffa has called the rule in this contex ; the "naturally 

Imputed score rule."  (18) 
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In the simplest case there Is an agreed-on rule that a single action 

will be taken.  There is no loss of generality in assuming that this action 

is one which is optimal for a given estimate R of the probabilities.* The 

average expected payoff to the enterprise as  perceived by the members of the 

group will be 

EU = 1/n Z Z  gkjU (R.j) . Z l/n Z ^^(R.j) - Z QjU*(R,j) 

where Q^  = l/n Z Qkj.  Since U^R.j) is a proper score rule, EU < Z Q U*(Q,j). 

j  ^ 

This is the simplest n-heads rule for an economic scoring scheme.  It can 

also be taken as a formulation of an informational n-heads rule, where the 

reward function is not concave.  Here the relevant criterion is not the 

objective expectation, but the average subjective expection -- the expectation 

based on the beliefs of the members of the group. This result, although not 

as strong as obtained with concave score rules, nevertheless is still fairly 

impressive.  It states that, even for an enterprise where the payoff may be 

specified in terms of "cold cash," if the members of the enterprise disagree 

on the relevant probabilities, then the expected payoff of that enterprise, 

based on a group estimate of the probabilities, will be higher than the aver- 

age expected payoff predicted by the individuals. 

This may not satisfy every member of the group, since it is clear that 

each individual thinks the enterprise would do better if it folloved his 

advice.  We can explore this a little further.  Suppose we introduce the 

notion of the Monday-raorning-quarterbacking-payoff (MMQP) as follows: 

Irrespective of what the enterprise does, each individual is paid, after the 

This rules out the trivial case where an action might be chosen which is 
dominated by some mixture of other actions. 
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fact, some fraction of what tho.  enterprise would have made if it had followed 

his advice.  Without going into niceties here, since we are dealing with 

expectations, we will let the phrase "what the enterprise would have made" 

be defined by the decision matrix.  Thus, each individual k is paid U*(Qk,j). 

where U* is defined by the optimal action given Qk and J is the event that 

happens. 

Individual k sees the total group as receiving 

Taking the average of these perceptions, we have 

1/n I I I  Q,./^) - E  I q/^, < D J 5j0*(5tJ) 

. * 
since U is a proper score rule. 

Even in this disaggregated case, where we have "every man for himself" 

to begin with, the average expectation of total group return is maximized by 

each individual adopting the same (average) group estimate. This formulation 

can be made more realistic by assuming the group agrees beforehand to pool 

their earnings and redivide after being paid.  An elementary example might be 

a group who agrees to engage in a series of gambling ventures.  Each makes 

his own bets, but the proceeds are pooled.  Their average expectation will 

be maximized if they decided beforehand to use a group predicion concerning 

the outcome of each gamble. 

The  economic n-heads rule can be extended to the case of a non-conncn 

payoff, retaining the assumption that a common action will be taken.  However, 

the story is a little monotonous - almost any way you view an enterprise, if ' 

there is disagreement on probabilities or utilities, but agreement on the 

rule of common action, the expectation of the group judgment is greater than 

the average expectation of the individuals. 
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Emplilcal  Validation 

Most of  the  results presented so far  in  this paper are methematical  and 

have limited empirical content.    Given that   individual utilities and prob- 

ability estimates  fulfill the standard  substantive conditions,   the n-heads 

rules  follow  tautologicaliy. 

Nevertheless,   there  is an understandable  reluctance to put  complete 

trust   in  such  formulations  for real  life  decisions.     The desire  to  see  th^m 

"tried  in practice"  is strong,  and  I  think justified,  even though  it  is dif- 

ficult  to  specify exactly what  the  issue  is.     The Missouri rule  "show me" 

has a good,   final ring to it.     In part,   this  impulsion comes from the over- 

all simplifications and extrapolations that  are a natural part of mathematical 

nndels.     Although  each simplification may  seem justifiable separately,   there 

is a reasonable  sense  in which it  can be  asked whether every-day decisions 

are expressed sufficiently well by the standard decision matrix so that  the 

predictions of  theory can be trusted. 

Unfortunately some of  the most  interesting  results,  especially  those 

concerning economic n-heads rules,  were generated only within the  last  few 

months,   and  there has not been sufficient   time  to carry out  relevant  experi- 

ments.     Most  of  the experimental studies relating to group judgment  have been 

conducted within a different conceptual  framework.     However,   it  is worth 

trying  to  see   if  some  previous experimental  results can be  interpreted  in 

light  of  the  present  analysis  to give an  initial  empirical back-up  to  the 

theory. 

A first  look suggests a rather surprising possibility.     The  results  of 

at least  two  studies  concerning betting appear  to support an even stronger 

n-heads  rule  than any derived in the previous  sections.    This result   is  that 
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the observed payoff for the group estimate Is higher than the observed average 

payoff over individuals. Although the theory does not reject this result for 

any given experiment, it does not predict it. The result cannot be derived 

from the elementary fact that a decision matrix is a proper score rule.  In 

the case of a bet, we have the decision matrix illustrated in Figure 6. 

E   not-E 

A. Bet on E     -ilH.   _ i 
a 

B. Bet on not-E   -1   -li- 
1-u 

Figure 6 

Payoff matrix for simple bet, 
(standard bet of 1 unit) 

where 1-u/u are the appropriate odds for a positive bet on an event with 

probability u. Maximization of expected payoff would require selecting A 

If the individual's belief was that the probability of E is greater than u, 

otherwise B. The derived score rule for this matrix is not concave, and in 

general, the average objective expected score for a group is not necessarily 

less than the objective expected score of the group average - it depends on 

the unknown objective probabilities. For example, for a group of two, with 

u - .4, if the objective probability is p - .6 and individual one thought 

the probability of E was .5 and individual two thought the probability was 

.2, then the average of the probabilities is .35. which would lead to a bet 

on B. The group expected payoff would be -.33, whereas the average expected 

payoff would be .083. 
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The published study by Robert Winkler is an experiment witn bets on 

football games by graduate students and faculty at the University of 

(19) 
Indiana.     The study was concerned primarily with assessing the probability 

estimates of the subjects in terms of informational score rules, but Includes 

the performance in terms of monetary payoffs for hypothetical bets.  Though 

hypothetical, the bets were realistic in the sense that if they had been placed 

the computed payoffs would have been realized. 

The relevant results of this study are presented in Table I.  The out- 

comes are expressed in terras of net gain per dollar bet. 

Table I 

Bets on Big Ten       Bets on NFL 
Games Games 

All subjects -.119 -.091 

Consensus -.094 -.031 

Winkler adds, "Moreover,... a consensus consisting of the faculty subjects 

alone ... did even better." 

If a different betting strategy was employed, namely one where the 

amount of the bet depended on the point spread quoted by the bookie, in this 

case Bet = (E-B) where E is the individual's expected point spread computed 

from his probabilities, and B is the bookie's reported point spread, the 

results are even more draraatic. 

Table II 

Big Ten NFL 

All subjects -.179 -.085 

Consensus .291 -.011 
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These results are similar to an unpublished study conducted at the RAND 

Corporation in the early exploratory phase of the group Judgment project.  In 

this case, the group was a group of horse-race handicappers, and the compari- 

son was between bets placed on advice of individual handicappers and those 

based on the majority vote of the handicappers. The results were similar to 

those in Table I, the group advice lost less money than the average individual 

advice. At that time this was taken to be a negative result, hence the study 

was not published! 

It is difficult to compose a meaningful null hypothesis for these two 

studies; thus it is hard to assess the significance of the better performance 

of the group over the average performance of the individuals. Winkler's 

study appears to be large enough to rule out "simple chance." 

One possibility suggested by these results is that there is a basic dif- 

ference between a single bet and repeated bets with a wide distribution of 

odds.  This observation receives some support from the gambling-house model 

employed by Brown as a device for generating scoring rules.     Although 

Brown uses the model as a "gedanke experiment," it can be reformulated to 

have a more literal interpretation.  Suppose a group of individuals experi- 

ence a succession of betting opportunities, each expressible by the matrix 

E not-E 

A. Bet on E 1/u 0 

B. Bet on not-E 0 1/1-u 

Figure 8 

Strategically Equivalent Matrix for Simple Bet 
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This is obtained from   ure 7 by adding 1 to all entries, giving a strategi- 

cally equivalent matrix. 

The sequence of opportunities can be characterized by a distribution 

D(u) of the parameter u, 0 < u < 1, which determines the odds offered.  To 

complete the model, we must assume independence between the believed prob- 

abilities Qk of the members of the group and the parameter u.  The decision 

rule, select A if Qk > u, otherwise B, leads to a variety of expected payoffs, 

depending on the distribution D(u). 

Expectation if E occurs =   (  M^i ^u 

Jo     u 

Expectation if not-E occurs =  | R^LL ^U 

Jrs        1-U 

P 

It is easy to see that the expected payoff is a proper score rule, since the 

decision rule is a proper score rule for any given u, and the sum of a set 

of score rules is a score rule. 

For some distributions D(u), the expected payoff is, in fact, concave 

in Q.  For example, if D(u) is uniform between 0 and 1, the expectation is the 

logarithm.  If D(u) = ku(l-u), the quadratic rule results.  The latter distribu- 

tion is rather appealing, since it assumes that opportunities with extreme 

odds (u close to 0 or 1) are relatively rare.  However, higher order dis- 

tributions of the form kur(l-u)S do not generate concave expectations. (21) 

Tabulating available odds for various kinds of gambling situations would 

quickly show which have distributions that are favorable for objective n-heads 

rules.  There is clearly a rich area of investigation possible here, both 

empirical study of distributions of opportunities, and analytic study of 

appropriate distributions for various sorts of decision matrices. 
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Coda 

The foregoing does not add up to a complete theory of group decision. 

Rather it presents a framework within which certain perceived difficulties 

with group decision can be resolved.  Thus, inconsistencies between indivi- 

dual and group preferences can be dealt with by anchored scales.  Inconsist- 

encies between individual and group probability estimates can be adjudicated 

by showing that group estimates will furnish higher performance scores than 

the average of individual scores. 

In any given decision situation, selection of a specific group utility 

measure or a specific probability aggregation technique requires considera- 

tions not contained in the framework.  Of course, there are some hints.  For 

many purposes, simple additive functions would appear to be acceptable 

approximations. 

For those social processes where group decisions are now in use (or are 

desired), the group decision analysis framework offers a  wider and more co- 

herent set of procedures than now commonly used.  In addition, the economic 

n-heads results suggest that group decisions have a broader scope and greater 

power than has been assumed.  It seems likely that group procedures would 

demonstrate advantages in many contexts which at present are the province 

of individual decisionmakers. 
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